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The photochemistry of 9-xanthenyl radicals produced by
pulse radiolysis of xanthene in 1,2-dichloroethane (1,2-DCE)
and CCly was studied by means of successive laser flash
photolysis. Photobleaching due to chlorine atom transfer from
solvents to the excited 9-xanthenyl radical was observed with
quantum yields of 0.04 and 0.29 in 1,2-DCE and CCly,
respectively.

Combined pulse radiolysis-laser flash photolysis
techniques are powerful tool to investigate the photochemistry of
short-lived transient species such as radicals,! radical ions2 and
n-complexes.3 Xanthene has been used as one of efficient
hydrogen donors,4 and the photochemical studies have been
carried out extensively.>8 However, photochemical reactions
of the resulting 9-xanthenyl radical have not been reported so far.
Pulse radiolysis is a convenient method to produce transient
species if adequate solvents were chosen. In the present study,
1,2-DCE was used to produce solute cations,® and CCly was
used as a Cl atom source. !0 Xanthene was recrystallized from
ethanol and 1 x 103 mol dm3 solutions were deaerated by
bubbling with argon before irradiation. Successive electron
pulse irradiation and flash photolysis were carried out by the
pulse radiolysis-laser flash photolysis system with a time
resolution of 10 ns described before.3

Figure 1 shows transient absorption spectra observed at
50 ns and 4 ps after irradiation of xanthene in 1,2-DCE with a
30 ns, 45 MeV electron pulse. The UV-Vis absorption bands
at 50 ns (340 and 940 nm) can be easily characterized as those
due to the xanthene radical cation (XH-+).11  After 4 us, these
bands disappeared and a new band at 340 nm was formed. The
inset of Figure 1 illustrates the decay of XH-+ at 900 nm and
grow-in of the 340 nm band. The 340 nm band can be
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Figure 1. Transient absorption spectra observed at 50 ns (@)

and 4 us (@) after pulse radiolysis of 1 x 103 mol dm3
xanthene in 1,2-dichlororethane. Inset shows the changes in
the absorbances at 340 and 900 nm after pulse radiolysis.

assigned to 9-xanthenyl radicals (X-)¢ which was produced via
deprotonation of XH:* as shown in Eq. 1. The deprotonation

XH-+— X+ H* (1)
of XH-* has been reported for the photolysis of xanthene in
H>O/CH3CN in the presence of p-nitrobenzoic acid” and for the
photobleach!! and annealing® of XH-* in low temperature
glassy matrices. On the other band, the radical cation was not
produced upon irradiation of xanthene in CCly. Nevertheless,
the 9-xanthenyl radical was produced directly via hydrogen
abstraction by chlorine atoms in CCly (Eq. 2).

XH +Cl —» X- + HCI @)

Figure 2 shows kinetic traces obtained by pulse radiolysis

-laser flash photolysis of xanthene in 1,2-DCE/CCl4 (0, 50, and
100 vol% CCly). Laser flash photolysis (6 ns width pulses of
337.1 nm from an N-laser) caused rapid and permanent
photobleaching of X-.  Actinometry was performed with
solutions of benzophenone (1.0 x 103 mol dm3) containing
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Figure 2. Kinetic traces observed at 348 nm by combined

pulse radiolysis-laser flash photolysis of 1 X 103 mol dm3
xanthene in 1,2-DCE (a), 50% CCly (b), and CCly (c).

Copyright © 1997 The Chemical Society of Japan



1168

®(photobleach)

0 | 1 1 1
0 20 40 60 80 100
Volume% of CCl,

Figure 3. Quantum yields of photobleaching of 9-xanthenyl
radicals in 1,2-DCE / CCly at different volume percents of CCl,.

naphthalene (1.0 x 10! mol dm3), and the extinction
coefficients (£337 ym = 20700 and £ 34¢ o = 22000 dm3 mol-!
cm!) of X- in CCly were estimated assuming the radiation
chemical yield of the chlorine atom in CCly to be 0.17 umol J-1
as described previously.3 The quantum yields of
photobleaching thus obtained were 0.04, 0.26, and 0.29 for O,
50, and 100 vol% CCly, respectively. The effects of CCly on
the quantum yields of photobleaching of X were investigated in
detail and are illustrated in Figure 3. The quantum yields of
photobleaching increased significantly on addition of small
amount (< 5 vol%) of CCly and reached a plateau value of 0.26
at 10% CCls. This constant value of quantum yields in the
wide range of 1,2-DCE concentration indicates that 1,2-DCE
does not quench the excited 9-xanthenyl radical.  Both
dimerization of X- which results in 9,9’-bixanthyl” and electron
transfer from X- leading to the closed-shell cation formation8:12
have been reported for the ground state X-. However, these
types of reactions can be ruled out in the case of the excited X-
on the basis of the solvent dependent photobleaching quantum
yields and the fact that the photobleaching of X- is not
accompanied by an occurrence of transient absorption of xanthyl
cation at around 380 nm.8:12  Since the present experimental
results suggest the significant role of CCly for the
photobleaching of X-, it appears probable that the
photobleaching observed in the this work is due to chlorine atom
transfer from the solvent to the excited 9-xanthenyl radicals as
shown in the following scheme.

O"—'—>O

Such a photochemical process in CCly was reported
previously for the reaction of the excited diphenylmethyl radical
and a charge-transfer mechanism leading to halogen atom
transfer was suggested.13 Chlorine atom transfer from 1,2-
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DCE to the excited 9-phenylxanthenyl radical has been also
documented.14  However, the present results revealed a
significant difference in the photobleaching quantum yields in
CClg and 1,2-DCE.  Since the smaller value of electron affinity
and the larger C-Cl bond dissociation energy than those of CCly
are expected for 1,2-DCE, !5 1,2-DCE should be a less efficient
reactant for the above photoreaction.
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